

Identity and Security 2025

DRAFT PROPOSAL BEING WORKED ON BY

FINOS’ FDC3 Identity & Security Working Group

Contents

Contents
Executive Summary
Support
Introduction
Problem Statement
Use Cases
Solution
Benefits
Conclusion
Appendix A: Security Issues Being Addressed
Appendix B: New Standard Mechanisms
Appendix C: A FINOS Circle of Trust
Appendix D: Some Criticisms / Drawbacks

Executive Summary

The Financial Desktop Connectivity and Collaboration Consortium (FDC3) has long facilitated
interoperability among financial applications through client-side protocols, primarily within
secure desktop containers.

However, as the ecosystem evolves toward web-based implementations, new security
challenges arise in an open, decentralized environment.

This paper presents a comprehensive security enhancement for FDC3, addressing critical
issues such as application spoofing, data leakage, unauthorized access, and the
limitations of bilateral trust relationships.

It also explores key use-cases that require FDC3 user- and app- identities, such as requesting
privileged information, working across devices, sending messages on a user’s behalf and
simplifying the log-in process across heterogeneous applications as well as potentially
expanding the scope to cover agent-based activities enabled by AI.

By integrating robust cryptographic mechanisms—including digital signatures, encrypted
channels, and JWT-based user identity—and introducing the concept of Circles of Trust, the
proposed framework establishes verifiable app and user identities while enabling scalable,
secure data exchanges.

Support
Many firms are supporting the FDC3 Identity & Security initiative. Here’s a selection of quotes.

Introduction

About FDC3

The Financial Desktop Connectivity and Collaboration Consortium (FDC3) is an open
standard designed to enable seamless interoperability between financial applications. Created
under FINOS (the Fintech Open Source Foundation), FDC3 defines common protocols, APIs,
and data formats that allow applications to communicate securely and efficiently across different
platforms.

Unlike traditional server-side integration approaches, FDC3 operates as a client-side protocol,
similar to how HTML standardizes content rendering in web browsers. This means applications
running on a user’s desktop can interact in real time without requiring centralized infrastructure,
reducing integration complexity and fostering a more connected financial technology ecosystem.

Historically, FDC3 has been closely associated with desktop containers—specialized
environments that enable financial applications to communicate within a controlled ecosystem.
However, as web technologies continue to evolve, there is a growing shift toward FDC3 on the
web, where interoperability extends beyond containerized desktops to browser-based
applications.

FDC3 On The Web
To interop on the web, previous versions of FDC3 relied heavily on custom vendor libraries
being added to apps. While effective, this approach often led to fragmentation and vendor
lock-in, limiting the flexibility of financial institutions. FDC3 2.2 removes this dependency by
introducing native web support, allowing applications running in standard web browsers to
communicate using the same FDC3 protocols as their desktop counterparts. This means
financial firms can now integrate and orchestrate workflows across both containerized and
web-based applications without requiring proprietary infrastructure, opening the door for
broader adoption across the industry.

While FDC3 2.2 enables greater flexibility by extending interoperability to the web, it also
introduces new security challenges. Unlike desktop containers, which operate within controlled
environments, the web is a far more open and hostile computing landscape, where
applications run in diverse, often untrusted contexts. This shift raises critical questions about
identity, authentication, and authorization—who is making an FDC3 call, whether they are
authorized to do so, and how to prevent unauthorized access or data leakage. Without a robust
security model, web-based FDC3 implementations risk exposure to cross-origin threats,
session hijacking, and malicious actors impersonating trusted applications. As FDC3
expands beyond closed ecosystems, implementing strong identity verification and security
controls becomes essential to ensure safe and compliant interoperability.

But opening up FDC3 to the web introduces new security challenges: application spoofing,
cross-origin attacks, data leakage concerns, session hijacking and trust management issues
(see Appendix A for a more in-depth discussion of these).

Prior Art

Wellington and Morgan Stanley's 2023 FDC3 Demo
Wellington Management and Morgan Stanley, both leaders in the financial industry, conducted a
demo using FDC3 in 2023 to showcase interoperability across financial applications between
firms. Their goal was to share liquidity data — essentially, financial holdings information —
across different systems.

However, despite the promise of seamless integration through FDC3, both firms encountered
significant issues: they had no way to verify the identity of their partner and there were risks to
data integrity from sharing sensitive information over FDC3 - a compliance / regulatory concern.
See Appendix B for a more detailed breakdown.

Symphony’s 2023 Demo: Sharing a JWT Token Over FDC3

In 2023, Symphony, a leading provider of secure communication and collaboration tools for the
financial industry, demonstrated how to share a user’s JWT token over FDC3. JWT tokens are
widely used in web applications for authentication and authorization—essentially, they prove
that the user is who they claim to be and define their access rights within an application.

However, this demo again brought to light new challenges: token data leakage, for one, passing
around tokens in public via FDC3 and whether or not apps could trust the tokens they received
from each other. (See Appendix A for a more in-depth discussion of these).

Wellington and Morgan Stanley's 2024 FDC3 Demo

In 2024, these firms returned to OSFF and performed the same demo as the previous year,
however this time demonstrating two key advances:

1. Signed FDC3 Context Objects which meant that applications receiving them could
guarantee the origin and integrity of the data.

2. Encrypted FDC3 Private Channels which meant that position information could be sent
in secret between the two firms over the ordinarily open protocol of FDC3.

This demo demonstrated these features layered over the top of unmodified FDC3 desktop
agents suggesting an easy upgrade path for apps interested in these privacies. While this

https://github.com/finos-labs/fdc3-identity-hackathon
https://youtu.be/KLe0pdeCE-0?si=42X-0Ur3jQEvco2k

mitigates the problems with the 2023 demo, it introduces new concerns, addressed by this
white paper:

1. Sensitive Data Leakage: Can Apps Be Trusted with Data?

While digital signatures ensure data comes from a trusted source, they do not guarantee
that the receiving app has the appropriate security controls in place. This introduces
the possibility that an app might:

○ Store sensitive data insecurely.
○ Share data beyond its intended recipient.
○ Use the data inappropriately or for malicious purposes (for example, insider

trading or corporate espionage).

2. App Identity vs. User Identity

The digital signature proves that the app sending the context object is authenticated and
has not tampered with the data, but it does not authenticate which user is behind the
action (as was the case in Symphony’s demo).

3. Lack of a Standard

There was no clear standard for implementing signed context objects within the FDC3
framework. Institutions and developers had to determine how to handle key
management, signature verification, and integration with existing authentication and
authorization systems on their own.

4. Pre-Existing Bilateral Trust Relationships:
In the demo, apps required bilateral trust relationships—i.e., the apps involved had to
know about each other and explicitly trust one another (via use of certificates and keys).
This limited the scalability and flexibility of the solution, as it was not easily applicable to
broader, decentralized ecosystems of apps.

Desktop Agent Trust and Vendor Approaches
In traditional desktop environments, a dedicated desktop agent acts as a trusted intermediary to
manage FDC3 communications, ensuring that only approved applications exchange data under
controlled conditions. This agent is often pre-configured by the host system, so its
trustworthiness is implicitly established through its integration within a secure desktop
ecosystem.

It is therefore possible that some of the problems above can be solved by desktop agent
vendors. For example, if a desktop agent is trusted, it could be used to filter messages between
apps to enforce data leakage policies. It could also manage app identity, or perform OAuth-style
user login functions on behalf of apps, centralising login.

However, replicating that level of trust on the web is inherently more challenging due to the open
and decentralized nature of browser environments. On the web, there isn’t a single, universally
trusted desktop agent. In fact, as discussed above, FDC3 For The Web is trying to move
away from specific vendor libraries.

It’s not therefore desirable that applications are forced to rely on predefined lists of trusted
endpoints or agents to verify the integrity of inter-app communications. Desktop Agents (much
like browsers) should therefore be regarded as an untrusted environment.

Problem Statement
FDC3 Security aims to address 6 key problems, as shown in the diagram below and the
accompanying text breakdown.

1. Shift to Web and Increased Security Needs

As FDC3 moves to the web, the need for enhanced security and identity management
has become critical, particularly as financial applications interact in increasingly hostile
computing environments.

2. App Identity Limitations

The current FDC3 protocol doesn’t assert app identity and lacks mechanisms for
ensuring the trustworthiness of sensitive data being exchanged, exposing it to risks of
data leakage and manipulation.

3. Insufficient User Authentication and Authorization

Outside of the Symphony demo, User authentication and authorization are not
adequately addressed, creating potential for unauthorized access and insider threats
when data is shared between users within trusted apps. When apps are left to handle
their own logins, this leads to a profusion of login approaches for users (OAuth,
challenge/response, access keys on a per-app basis).

4. Lack of Data Integrity Assurance

Existing solutions do not provide guarantees of data integrity, leaving financial
institutions vulnerable to errors, fraud, and breaches during inter-app communication.

5. Pre-Existing Bilateral Trust Relationships

In the 2024 Wellington and Morgan Stanley demo, apps required bilateral trust
relationships—meaning the apps involved had to explicitly know and trust each other.
This limited the scalability of the solution and made it difficult to apply in a broader
ecosystem of apps, where automatic trust and interoperability across different platforms
are essential.

6. Need for Evolution in Security Frameworks:

To ensure secure, reliable data exchanges, FDC3 must evolve to address user-level
security and provide stronger frameworks for data protection and user accountability,
while also enabling broader interoperability without requiring app-specific bilateral
arrangements.

Use Cases

1. Request Pre-Trade Information (App-Identity)
Persona: Buy-side trader
From: In-house platform
To: Multiple Single-dealer platforms
Flow: A buy-side trader requests margin requirements on an instrument from multiple
sell-side platforms. Information is sent back through intent replies. It has a short list of
applications it trusts to return this information to.
Risks:
- Who did the request come from?
- Assuming it’s a valid request, who else is listening?

2. Sending A Message On A Chat Platform (App-Identity)

Persona: Buy-Side Trader
From: Research Application
To: Another member of staff
Flow: The trader wants to notify a colleague of some new research, and hits a button to
send a message on Chat Platform. Chat Platform receives the intent, and observes that
the application sending the intent is within a “circle of trust”, and decides to allow the
message to be sent.
If the sending app is trusted, you may not need a secondary, on-screen confirmation.
Another example: Creating an open order in a blotter.
Risks / Questions:

- We don’t want any app to be able to send/spam messages on Chat Platform
ad-hoc.

- Who is allowed in the “circle of trust”? Is this the same for everyone in the firm?
- Does this mean that administration of this circle is in scope?

3. Auditing / Enabling User Activity (User Identity)
Persona: A Research Application
From: A Trader, using FDC3
Flow: An application wants to keep track of who is reading news articles. Subscriptions
are required to view certain articles. The app uses a “circle of trust”, leveraging the IDP
identity to see who is reading each article.
Risks:

- Who is interested in having this? Vendors?
- Which apps are in the circle of trust? Which apps can request identity from an

IDP?
- Does this replace SSO? - Not really.
- Prospect customers as an example –a legal requirement, knowing who you are

talking to.

4. Multiple Logins (User Identity)
Persona: A Trader
Flow: A trader is starting up his desktop. They need to log into multiple applications,
remembering multiple usernames and passwords.
Risks:

- Having multiple usernames creates a security risk as users need to manage
more passwords.

- We need to be careful about token spillage, and ensure tokens are scoped to
individual apps and are not useful outside of the context.

- “Secondary platforms” - where people aren’t bothering to log in because there
are too many screens.

- This could take advantage of an existing SSO / Oauth platform if a bank has one.

5. Multi-Party Provenance Example
 Persona: Buy-side trader

From: In-house platform
To: Multiple Single-dealer platforms And A Chat System
Flow:

- A buy-side trader requests margin requirements on an instrument from
multiple sell-side platforms.

- A chat system can be used to send the actions across the network to
other users/firms to perform the action.

- The identity of the user is passed with the action.
- At the other end of the chat, an application reads the message and

processes it, and is able to raise an intent with the provenance of the
original request attached to it.

 Implications:
- App B would be able to know that it was User A that created the request.
- App B doesn’t even have to know that it was Symphony/Teams/Other Chat App

that sent the message.

Risks:
- From the buy-side perspective, they expect the same level of confidentiality as in

cases 1 and 2 - none of their data is shared, but the fact that they want to see
this data is in of itself confidential. From the sell-side perspective they cannot risk
this information leaking to anyone except the buy who requested it.

Solution
There are various components to the solution to this problem which will be described below,
building on the good work that has been described in the introduction section. This includes:

1. Changes to the FDC3 standard itself such as new context objects and intents as well
as new metadata

2. New Roles For Applications as either identity consumers or identity providers (IDPs)
3. A FINOS Circle of Trust around applications fulfilling the above roles within the FINOS

FDC3 financial ecosystem.

4. Application Conformance as a way of gate-keeping entrance requirements for joining
the circle of trust.

Why Not Just OAuth / SSO?
1. OAuth has to be decided up-front by application developers. FDC3 allows for this to be

done at the time of app-directory construction.
2. Integration for an application therefore becomes a problem, especially for smaller

vendors who would end up having to support a whole bunch of different identity
providers, many of which might exist behind a firewall and not be accessible to them.

3. Also, being able to pass around identity as part of the workflow is helpful (see use case
5)

Standards Changes
Many of these proposals originate in the https://github.com/finos-labs/fdc3-security project,
which was the basis of the 2024 Wellington / MS demo.

https://github.com/finos-labs/fdc3-security

● 🔒 Proving Data Authenticity: Apps can now sign the messages they send, helping
others verify who really sent them and whether the data was tampered with. This relies
on securely published public keys and an optional “circle of trust” between apps.

● 🔐 Encrypted Messaging: Apps in a private group (channel) can request and share
encryption keys to ensure their communications remain private. Only the intended
recipient can read the encrypted message.

● 👤 User Identity Sharing: A new data type lets apps securely share a user’s identity
(like name and email), backed by a signed token (JWT) to prove it’s authentic and hasn’t
been faked.

● 🆔 How Identity is Requested: Apps can ask another trusted app (an identity provider)
for a user’s details in a 'fdc3.user' context by raising a standard
CreateIdentityToken intent. The identity is then shared over a secure, private
connection to ensure confidentiality.

These changes aim to make app-to-app communication in financial services both more secure
and trustworthy, without requiring every developer to manage the complexity themselves. See
Appendix B for a technical breakdown of how this works in practice.

New Roles For Applications
By allowing user and app identity, we change the landscape of FDC3 security. We envisage
that there will be two types of application, identity providers (IDPs, who respond to
CreateIdentityToken requests and return 'fdc3.user' contexts) and identity consumers
(those who raise the CreateIdentityToken intent). Let’s consider how this change plays out
when a workflow happens over FDC3 enabled applications.

For a given operation:

● Users can either be unknown, known or trusted.
● Applications can either be unidentified, identified or trusted.

Let’s go through each in turn to understand the roles applications now play.

User Trust Level
By default, a user can start an app on the FDC3 platform. It's always been possible for the app
to manage its own user authentication, but now it has another option: it can raise the
CreateIdentityToken request to discover a user known to an IDP. This allows the application
to move the user from unknown to known.

User Level State Operations At This Level

Unknown ViewNews

Known Authenticated View/Store User Preferences

Trusted Authorized StartOrder, View Trade Details

Some examples of operations requiring different levels of user trust.

To move from known to trusted requires authorization. This can either be handled by the app
or by the IDP.

App Authorization

In this case, the app maintains a list of users and the roles they can perform, deciding on its
own whether a particular task is authorized for a user.

IDP Authorization

In some JWT Claim systems, the token is sent with a scope field giving details of the functions
the user is allowed to perform. The app can choose whether or not to trust the IDP for this
granular level of control.

App Trust Level
In prior versions of FDC3 (and for applications not opting into FDC3 Security and declaring a
public key), messages arriving from the desktop agent are in an unknown state as regards their
application of origin.

However, by providing the authenticity metadata as described above, the receiving app can
move them to the known state, resolving their identity by way of their public key information and
TLS certificates. Depending on the operation, this may be enough: for audit purposes, it might
be sufficient to know the identity of the user and the calling app.

App Level State Operations At This Level

Unknown ViewNews

Known Authenticated StartCall, ViewChat

Trusted Authorized CreateIdentityToken, SendChatMessage

Often, when data is being returned in FDC3 (like in the Morgan Stanley / Wellington demo
example with liquidity information) you not only need to know the calling app but also trust them.
To move from known to trusted requires authorization. This can either be handled by the app
itself (as above with user trust) or using a third party (e.g. FINOS) as described below.

App Authorization
The app maintains a list of the public key URLs / operations which it trusts. In many cases, it
may augment this with additional requirements on user trust. For example, it might be
necessary to assert that not only is the request from a specific app, but that the user has the
elevated privileges required. CreateTrade, ViewLiquidity, ViewPrice are all examples
where this might be true.

Third Party Authorization
For some operations, an app may want to defer authorization to a third party. In this case, the
app doesn’t directly know the sending app, but it does recognise and trust one of the circles
the app belongs to (via either certificates trusted by the app developer or an

externally-administered allow list approved by the app developer). Therefore, the operation is
permitted. (See Appendix C for more information).

This could be the case if a firm is delegating their Identity and Access Management (IAMS) to
one of the FINOS IDP providers. This is beyond the scope of the changes to the standard but
we’ll cover a special case of this in the section below.

Prompt The User

A third approach is to ask the user. In this case, an app receives a message, checks the
signature and identifies the app, but then asks the user whether the user trusts the app to do
the operation.

Benefits
Let’s review the issues outlined earlier and see how they are impacted by this change:

1. Shift to Web and Increased Security Needs
○ Apps now have a way to encrypt data between each other.
○ Apps have a trust model to use to decide when to send data to one another.

2. App Identity Limitations
○ Apps have a URL (public key endpoint) indicating their identity.
○ Apps are now identified on a per-broadcast basis by their (certificate-verified)

URL

3. Insufficient User Authentication and Authorization
○ Users are identified in FDC3 by IDPs
○ User identity is portable across different FDC3 applications
○ User identity becomes a first-class citizen of FDC3 via the ‘fdc3.user’ context

object.

4. Lack of Data Integrity Assurance
○ Provenance information is included in each FDC3 message.
○ Encryption is provided.

○ App certification and Circles-of-Trust provide some degree of security around
accidental data disclosure.

○ User identity provides the ability to audit user activity in a cross-app way.

5. Pre-Existing Bilateral Trust Relationships
○ Circles-of-Trust provide an optional way of avoiding re-introducing bilateral

relationships back into FDC3.

6. Need for Evolution in Security Frameworks
○ Even on the web, users are accountable for their actions
○ An end to the “hundreds of logins” problem

Adoption Path
The adoption path we foresee is:

1. The FDC3 community works to develop FDC3 Security 2.0, containing the new features
needed above.

2. IDPs create apps in the FINOS App Directory, exposing their CreateIdentityToken
handlers.

3. FINOS certifies these early adopters.
4. MorganStanley / Wellington / StateStreet adopt the FDC3 Security libraries and join the

early FINOS circle-of-trust, demonstrating secure interoperability across heterogeneous
desktop environments at OSFF.

5. FDC3 2.3 contains the changes to the standard described above.
6. FDC3 Security is added to the FDC3 repo as an experimental part of the standard.
7. Other firms wishing to add user identity to their apps opt-in and join the FINOS

circle-of-trust, passing app conformance. This might be useful for license management,
for example.

8. Apps not requiring login (or demos) either remain unconformant or pass conformance as
a security signifier but don’t use ‘fdc3.user’.

Conclusion
The proposed security enhancements for FDC3 represent a significant evolution in enabling
safe, reliable, and scalable interoperability across financial applications—especially as the
ecosystem transitions from desktop containers to a web-based environment. By integrating

robust cryptographic mechanisms, such as digital signatures, encrypted channels, and
JWT-based user identity, the design addresses critical challenges including application spoofing,
data leakage, and unauthorized access.

The introduction of Circles of Trust, alongside clear roles for identity providers and
consumers, offers a framework to bypass the limitations of bilateral trust relationships while
ensuring consistent and verifiable authentication.

Although the increased complexity—particularly in key management, certificate handling,
and performance considerations—poses challenges, the reference implementation and future
refinements should help mitigate these issues.

Appendix A: Security Issues Being Addressed

Web Security Challenges due to “FDC3 On The Web”

1. Application Spoofing & Impersonation

Since web applications run in open environments, malicious sites or browser extensions
could masquerade as legitimate FDC3-enabled applications. Without proper identity
verification, an attacker could send rogue FDC3 intents, manipulate data, or hijack workflows.

2. Cross-Origin Attacks (CORS & Cross-Site Scripting - XSS)

Web applications operate across different origins (domains). This opens the door to
cross-origin request forgery (CSRF) and cross-site scripting (XSS) attacks, where a
malicious site could inject scripts into a trusted FDC3 application to execute unauthorized
actions.

3. Unauthorized Data Access & Leakage

FDC3 is designed for seamless data sharing, but without a robust access control mechanism,
sensitive financial data could be exposed to unauthorized applications. A compromised or
untrusted app could subscribe to intents, intercept context data, or exfiltrate sensitive
information across different applications.

4. Session Hijacking & Token Theft

Since web applications rely on browser-based authentication mechanisms (cookies, OAuth
tokens, JWTs, etc.), they are vulnerable to session hijacking, token replay attacks, and
phishing scams. If an attacker steals an authentication token, they could impersonate a
legitimate application and misuse FDC3 permissions.

5. Lack of Secure App Discovery & Trust Management

In desktop containers, applications are often pre-approved and registered, ensuring a trusted
environment. On the open web, there is no built-in mechanism to verify whether an app
should be trusted to participate in an FDC3 workflow. This could lead to rogue applications
injecting themselves into communication flows, potentially compromising security.

Issues with Cross-Firm Interoperability

As evidenced in the Wellington / Morgan Stanley interoperability proof-of-concept in 2023.

1. Lack of Identity Verification

In the demo, data such as position data was shared between different applications
using FDC3 intents. However, one of the challenges was that there was no robust
identity management system in place to verify who was sending the data.

2. Data Integrity Risks
Since FDC3 relies on open standards for data sharing, without strong authentication
and authorization mechanisms, there is a risk that data could be intercepted, altered,
or tampered with during transmission (e.g. by the desktop agent)

3. Absence of Secure Communication Channels
FDC3, in its earlier implementations, didn’t define strong enough encryption or secure
communication protocols for data being exchanged between applications. Without
end-to-end encryption and trusted identity assertions, organizations were left
exposed to potential man-in-the-middle attacks and unauthorized data access.

4. Compliance & Regulatory Concerns
For firms like Wellington and Morgan Stanley, ensuring compliance with financial
regulations (such as MiFID II, GDPR, or SEC guidelines) is crucial. The inability to
ensure data authenticity and integrity over FDC3 created significant barriers to trust,
especially when sharing sensitive financial information. Any leakage or
misrepresentation of data could result in severe compliance violations and
reputational damage.

Issues With Apps Delivering User Identity

As evidenced by Symphony’s Hackathon IDP demo

JavaScript

1. Token Exposure and Data Leakage

JWT tokens typically contain sensitive user information (such as user IDs and roles),
and sharing them over an open protocol increases the risk of them being intercepted.

2. Increased Attack Surface

By passing authentication tokens between applications, the attack surface expands.
Any application that receives the token could be a potential point of compromise if it
doesn't have proper access controls or if it is compromised.

3. Trustworthiness of Apps

In a demo scenario like this, it’s important to consider whether all participating apps in
the FDC3 ecosystem can be trusted. Without proper app authentication and source
verification, there’s a risk that one of the applications could be rogue or compromised,
and they could misuse the JWT token to gain unauthorized access.

Appendix B: New Standard Mechanisms

1. __signature metadata
When FDC3 Security sends a context, it signs the message with the broadcasting app’s identity,
by adding some metadata to the broadcast payload like this:

{
 "__signature" : {
 "digest": "<the signature, encoded using the app's private key and the
contents of the context being broadcast>",
 "publicKeyUrl": "<URL of the app's public key (matching the private key)
that can be used to check the signature" ,
 algorithm: { // currently state-of-the-art, could change in the future.
 "name": "ECDSA",
 "hash": "SHA-512",
 "namedCurve": 'P-521'
 },
 "date": "timestamp, when the message was signed. Messages are expected to
have a lifespan and to avoid replay attacks."

JavaScript

 }
}

2. authenticity metadata

When a message is received, FDC3 Security checks the signature and adds the
authenticity key to the ContextMetadata like so:

{
 "authenticity": {
 "verified":true, // set to true if the broadcast
was signed and had a signature that could be verified
 "valid":true, // set to true if the public key
was able to verify the signature
 "publicKeyUrl":"/sp1-public-key", // the URL of the JWK Set used to
verify the signature, as given by the sender
 "trusted": true // set to true if the receiving
app and the broadcasting app both belong to the same circle-of-trust.
 }
}

Any signed context object will have its authenticity checked and this key filled in. This
information is available when an app sets up a BroadcastHandler and is passed along with
the context object itself.

A signed context object is one which has a __signature key added to it, containing a digest of
the context object signed by the broadcasting app’s own private key.

JavaScript

In order to sign its requests and broadcasts, an app needs to set up a public / private key and
publish its public key in a JWK Set file (JSON Web Key Set). The JWK Set is a set of public
keys. This allows for old keys to be rotated out and new keys to be added over time.

By specifying the public keys at an HTTPS endpoint, the application gives a certificate-backed
identity for itself which cannot be spoofed by other applications.

Finally, if the app opts in to a specific circle-of-trust, the final field “trusted” indicates whether
both the sending and receiving apps belong to the same circle of trust. More details on this and
the reason for having it are in the “FINOS Circle of Trust” section. It is entirely optional whether
an app decides to observe this field.

3. Encryption Primitives and Request / Response Context Types
FDC3 Security adds the 'fdc3.security.symmetricKey.request' and
'fdc3.security.symmetricKey.response' context types, which allow members of a private
channel to negotiate a symmetric key for encrypted communications on that channel.

export type SymmetricKeyResponseContext = Context & {
 type: 'fdc3.security.symmetricKey.response',
 id: {
 publicKeyUrl: string
 }
 wrappedKey: string,
 algorithm: any

https://jwkset.com

JavaScript

}

export type SymmetricKeyRequestContext = Context & {
 type: 'fdc3.security.symmetricKey.request'
}

This is intended to be used in conjunction with the authenticity data. When a
data-publishing app receives a 'fdc3.security.symmetricKey.request',it uses the
authenticity metadata to decide whether or not to broadcast a symmetric key over the channel.
As the symmetric key is encrypted with a single app’s public key, only the requesting app can
decrypt and therefore use the symmetric key to further decrypt communications on that channel.

When an app broadcasts encrypted context data, only the type field of the context remains
visible. This is necessary as the type information is used by the desktop agent and the context
handlers for deciding whether to route or process the context. The rest of the context
information is hidden in a field called __encrypted, replacing all the other fields until the
context is decrypted again.

If an app receives a context object containing an __encrypted field, then it can choose to send
a 'fdc3.security.symmetricKey.request', asking for the key to decrypt.

Note that all of this behaviour is handled within the FDC3 security code: apps just need to call
setChannelEncryption() on a private channel when they want to start using encryption and
then all the other behaviour is handled for them.

4. fdc3.user Context Type
For identity consumers to receive the details of the user, we need a new FDC3 context type,
‘fdc3.user’, which looks like this:

{
 "type": "fdc3.user",
 "id": {
 "emailAddress": "john.doe@somebank.com",
 "name": "John Doe"
 },

mailto:john.doe@somebank.com

JavaScript

JavaScript

 "jwt":
"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpZCI6MTIzNDU2Nzg5LCJuYW1lIjoiSm9zZXBoI
n0.OpOSSw7e485LOP5PrzScxHb7SR6sAOMRckfFwi4rp7o", // original JWT
}

Contents of ‘jwt' Field
JWT or JSON Web Token is an internet standard for passing around authentication credentials,
and is a base-64 encoded string which is cryptographically signed. The string is split into three
sections, delimited by ‘.’ characters. The first section is a header, telling us the format of the
JWT. ie.

// first part of the JWT token. This is standard and won't change.
{
 "alg": "HS256",
 "typ": "JWT"
}

The second part is the payload, like so:

{
 "iss": "https://symphony.com", // organisation issuing/signing the
identity
 "sub": "john.doe@somebank.com", // identity of the person
 "aud": "https://the.requesting.app/publicKeyUrl", // app asking for identity
 "exp": 234532445325, // expiration date.
 "jti": "32812-23423-3123" // unique ID for the key.
 "scope: "read:profile write:operation" // things the IDP says the user can
do.
}

By providing all these fields, we scope the JWT token between a single identity provider (IDP)
and a single identity consumer (app). This is important in case tokens are leaked (more on that
later).

mailto:john.doe@somebank.com
https://the.requesting.app/publicKeyUrl

JavaScript

The final part of the JWT is a signature. In much the same way as a signed context, this allows
the receiving app to check the validity of the token that it’s been sent. An app can prove that the
token is from a particular source. In our case, we would expect the signature of the token to
match the application’s public key in the same way we do for the authenticity metadata.

5. Requesting User Identity
In order to request an identity, an App must raise an Intent, CreateIdentityToken. This is
paired with a piece of context data ‘fdc3.user.request’:

{
 "type" : "fdc3.user.request",
 // space for other data
}

Resolving the intent follows normal FDC3 rules: if there are multiple apps that listen for
CreateIdentityToken, then the user chooses which app to resolve with. In the case of a
single app, this will be used. The single app case is the expected use-case.

Rather than broadcasting the token in public to all the applications, it is expected that the
identity providing app (the IDP) will open a private channel with the requesting app and deliver
the token in encrypted format over that channel. The requesting app then decrypts as
described above.

Appendix C: A FINOS Circle of Trust
As described in the problem statement:

● We don’t want to end up with a system of bilateral agreements again.
● We don’t want a situation where untrusted apps exfiltrate sensitive information.

However, this poses a problem. Within the arrangement above we have a role for IDPs
responding to CreateIdentityToken, but we mustn’t allow just any app to be able to use this.
Only trusted apps should be able to get identity tokens, otherwise bad-actor apps can potentially
discover information about who is using FDC3.

For this reason, we would like to create a circle of trust in which:

1. FINOS is able to admit new IDPs who will respond to CreateIdentityToken.
FDC3 directory assemblers are then free to include those IDPs in their app directories.

2. FINOS performs an app conformance process (described below). Apps passing the
conformance process will be permitted by IDPs to request CreateIdentityToken.
FDC3 directory assemblers are then free to include these apps in their app directories,
along with any others they may want to include.

3. Apps within the circle of trust shouldn’t need to know about one another therefore,
avoiding the bilateral agreements, or storing details of each other when the app is
created

4. Apps can prove their shared membership of a circle when needed.

By this measure, we can exert some level of control over which applications have access to
user information. There is prior art in this space in the form of the Symphony App
Authentication / Circle of Trust Model.

It’s worth pointing out that this doesn’t preclude other organisations adopting FDC3 and creating
a similar system in their own industry. This would be welcomed. In fact, apps may want to enter
into other trust relationships and manage these circles too.

Workflow For Applications Requiring Identity
1. App A joins the FINOS circle of trust. They are issued a digital signature composing

their URL, joining/expiration dates and some proof from FINOS that they are part of the
circle.

2. App B is an IDP, and part of the FINOS circle of trust already.
3. App A raises CreateIdentityToken
4. App B observes the request and notes the authenticity metadata. If it is trusted, it

responds with an “fdc3.user” context object, over an encrypted channel as described
above. In order that the app is trusted, App A must provide its signature to App B as part
of the context data. I.e. As well as signing the context object, App B would also provide
its certificate of authenticity, proving that it is a member of the same circle of trust as App
A.

5. App A’s FDC3 security middleware would construct the authenticity metadata for the
returned context object, checking that it is signed correctly. After setting “verified”,
“valid” and the “publicKeyUrl” it would then need to decide whether the App B is
“trusted”. To do this, it would check the certificate sent by App B to make sure that it
is signed by FINOS (in this case).

In the above example, each app checks that the other belongs to the circle of trust. That way,
App B can ensure it isn’t leaking user information, and App A can ensure that it’s being given
user information it can rely on.

Implications

● The above description is for a specific FINOS circle of trust, however, the standard
should not prevent other groups from existing.

https://docs.developers.symphony.com/ext-apps/app-authentication
https://docs.developers.symphony.com/ext-apps/app-authentication

● FINOS will have to issue certificates in this manner which applications could either
contain built-in or load from servers at runtime.

● Apps don’t necessarily need to belong to trust groups (or the FINOS trust group) but
could instead construct their own, separate from the decisions made by directory
compilers or the desktop agent.

● The desktop agent remains untrusted.

The choice of this approach entirely belongs with the app, but the enabling factor is that apps
must provide their identities.

Application Conformance
FINOS has experience in administering an FDC3 Desktop Agent conformance program. We
would expect that a similar process of “badging” can be rolled out for applications wishing to join
the initial FINOS circle-of-trust.

Conformance is not so clear cut as with a desktop agent: there is no set of functional tests you
can run to ensure it works as expected. However, we would expect at a minimum:

1. The app is using FDC3 security and signing contexts it broadcasts.
2. The app is running on public infrastructure with a public URL, high-strength

certificate, up-to-date HTTPS etc,
3. The app passes some basic automated security checks.
4. The app publishes its public key in the correct JWK Set format on a domain that reveals

ownership via its name and certificate.
5. The app is publishing an accurate AppD record.
6. The app makes some use of CreateIdentityToken.
7. App developers declare what they are using identity data for in their paperwork.

If the app is an IDP, we would also expect:

1. That there is an endpoint available to FINOS where we can check the list of allowed
CreateIdentityToken receivers, update the list with new applications as they are
added to the circle

2. This endpoint is secured by password or other security means.
3. There is an audit log of changes to this data which is sent to FINOS on a regular basis.

Appendix D: Some Criticisms / Drawbacks

Complexity and Adoption
The design introduces significant complexity—particularly around key management, certificate
handling, and maintaining the circle of trust. While these are essential for robust security, they
could be challenging to implement consistently across the diverse financial ecosystem. As it
stands, applications are required to manage:

● Their Public Key: To be published as part of a JSON Web Key Set (JWKS), allowing
other applications to verify digital signatures.

● Their Private Key: Which must be securely stored and used only in controlled,
server-side operations.

● Certificates for Any Circles of Trust They Belong To: These certificates are critical for
proving membership in a trusted group (e.g., the FINOS Circle of Trust).

To mitigate these concerns, we already have a reference implementation available at
https://github.com/finos-labs/fdc3-security. This implementation should be further developed
with example apps and enhanced documentation that demonstrates proper key management
practices. Notably, signing should occur on the server side—addressing the current security
weakness of performing these operations client-side, which exposes private keys to untrusted
environments.

Furthermore, the current implementation does not yet include complete circle-of-trust logic. This
functionality needs to be added and demonstrated in a straightforward manner to show how
apps can dynamically verify shared trust without resorting to bilateral agreements.

Key Management and Revocation
Apps must manage their public and private keys carefully. If a private key is compromised, the
application must issue a new key pair and update its public key in the JWKS as quickly as
possible, effectively retiring the old key to minimize risk. A clear strategy for key rotation and
revocation is essential to maintain trust over time.

User vs. App Identity Distinctions
The expectation is that most apps will not need to differentiate heavily between which app is
sending data; instead, they can rely on user privileges and the established app trust levels. This
approach simplifies the trust relationships by focusing on user authorization rather than granular
app identity. In directory configurations, typically only one Identity Provider (IDP) will be
present—even though we anticipate multiple IDPs joining the FINOS Circle of Trust. There is
also a need to refine how user roles and claims are managed at the IDP level within FDC3 to
ensure consistent authorization across applications.

https://github.com/finos-labs/fdc3-security

Performance and Latency Considerations
Cryptographic operations, including signing, verification, encryption, and decryption, can
introduce latency. In the existing demos, these operations are performed on the client side,
which is a security risk since it requires transporting private keys into an untrusted environment.
We need to conduct performance benchmarking when these operations are moved to the server
side to ensure that the additional security measures do not adversely impact the user
experience. Additionally, if context objects are transmitted in large volumes, we may need
mechanisms to optimize or selectively omit signing for certain types of data to reduce overhead.

Interoperability and Legacy Systems
This design is intentionally opt-in, meaning that existing applications and desktop agents can
continue to interoperate without modification. However, it is important to note that some FDC3
designs, particularly those implemented by certain vendors, include interception and
modification of contexts as they pass through the desktop agent. Such behavior would conflict
with the integrity provided by digital signatures, as any alteration of the signed data would
invalidate the signature. Therefore, the proposed design assumes that applications adhere to a
model where the desktop agent is not trusted to modify context data, ensuring the validity of the
digital signatures remains intact.

	Identity and Security 2025
	
	Contents
	Executive Summary
	
	Support
	
	Introduction
	About FDC3
	FDC3 On The Web
	Prior Art
	Wellington and Morgan Stanley's 2023 FDC3 Demo
	Symphony’s 2023 Demo: Sharing a JWT Token Over FDC3
	Wellington and Morgan Stanley's 2024 FDC3 Demo
	1.Sensitive Data Leakage: Can Apps Be Trusted with Data?
	2.App Identity vs. User Identity
	3.Lack of a Standard
	4.Pre-Existing Bilateral Trust Relationships:

	Desktop Agent Trust and Vendor Approaches

	Problem Statement
	1.Shift to Web and Increased Security Needs
	2.App Identity Limitations
	3.Insufficient User Authentication and Authorization
	4.Lack of Data Integrity Assurance
	5.Pre-Existing Bilateral Trust Relationships
	6.Need for Evolution in Security Frameworks:

	Use Cases
	1.Request Pre-Trade Information (App-Identity)
	2.Sending A Message On A Chat Platform (App-Identity)
	3.Auditing / Enabling User Activity (User Identity)
	4.Multiple Logins (User Identity)
	5.Multi-Party Provenance Example

	Solution
	Why Not Just OAuth / SSO?
	Standards Changes
	New Roles For Applications
	User Trust Level
	App Authorization
	IDP Authorization

	App Trust Level
	App Authorization
	Third Party Authorization
	Prompt The User

	Benefits
	1.Shift to Web and Increased Security Needs
	2.App Identity Limitations
	3.Insufficient User Authentication and Authorization
	4.Lack of Data Integrity Assurance
	5.Pre-Existing Bilateral Trust Relationships
	6.Need for Evolution in Security Frameworks
	Adoption Path

	Conclusion
	Appendix A: Security Issues Being Addressed
	Web Security Challenges due to “FDC3 On The Web”
	1. Application Spoofing & Impersonation
	2. Cross-Origin Attacks (CORS & Cross-Site Scripting - XSS)
	3. Unauthorized Data Access & Leakage
	4. Session Hijacking & Token Theft
	5. Lack of Secure App Discovery & Trust Management

	Issues with Cross-Firm Interoperability
	1.Lack of Identity Verification
	2.Data Integrity Risks
	3.Absence of Secure Communication Channels
	4.Compliance & Regulatory Concerns

	Issues With Apps Delivering User Identity
	1.Token Exposure and Data Leakage
	2.Increased Attack Surface
	3.Trustworthiness of Apps

	Appendix B: New Standard Mechanisms
	1. __signature metadata
	2. authenticity metadata
	3. Encryption Primitives and Request / Response Context Types
	4. fdc3.user Context Type
	Contents of ‘jwt' Field

	5. Requesting User Identity

	Appendix C: A FINOS Circle of Trust
	Workflow For Applications Requiring Identity
	Implications
	Application Conformance

	Appendix D: Some Criticisms / Drawbacks
	Complexity and Adoption
	Key Management and Revocation
	User vs. App Identity Distinctions
	Performance and Latency Considerations
	Interoperability and Legacy Systems

